Glycogen phosphorylase and pyruvate dehydrogenase transformation in white muscle of trout during high-intensity exercise.

نویسندگان

  • Jeff G Richards
  • George J F Heigenhauser
  • Chris M Wood
چکیده

We examined the regulation of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) in white muscle of rainbow trout during a continuous bout of high-intensity exercise that led to exhaustion in 52 s. The first 10 s of exercise were supported by creatine phosphate hydrolysis and glycolytic flux from an elevated glycogenolytic flux and yielded a total ATP turnover of 3.7 micromol x g wet tissue(-1) x s(-1). The high glycolytic flux was achieved by a large transformation of Phos into its active form. Exercise performed from 10 s to exhaustion was at a lower ATP turnover rate (0.5 to 1.2 micromol x g wet tissue(-1) x s(-1)) and therefore at a lower power output. The lower ATP turnover was supported primarily by glycolysis and was reduced because of posttransformational inhibition of Phos by glucose 6-phosphate accumulation. During exercise, there was a gradual activation of PDH, which was fully transformed into its active form by 30 s of exercise. Oxidative phosphorylation, from PDH activation, only contributed 2% to the total ATP turnover, and there was no significant activation of lipid oxidation. The time course of PDH activation was closely associated with an increase in estimated mitochondrial redox (NAD(+)-to-NADH concentration ratio), suggesting that O2 was not limiting during high-intensity exercise. Thus anaerobiosis may not be responsible for lactate production in trout white muscle during high-intensity exercise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs.

This study investigated the transformational and posttransformational control of skeletal muscle glycogen phosphorylase and pyruvate dehydrogenase (PDH) at three exercise power outputs [35, 65, and 90% of maximal oxygen uptake (VO2 max)]. Seven untrained subjects cycled at one power output for 10 min on three separate occasions, with muscle biopsies at rest and 1 and 10 min of exercise. Glycoge...

متن کامل

Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise.

The pyruvate dehydrogenase complex (PDC) has a key position in skeletal muscle metabolism as it represents the entry of carbohydrate-derived fuel into the mitochondria for oxidation. PDC is regulated by a phosphorylation-dephosphorylation cycle, in which the pyruvate dehydrogenase kinase (PDK) phosphorylates and inactivates the complex. PDK exists in four isoforms, of which the PDK4 isoform is ...

متن کامل

Lipid oxidation fuels recovery from exhaustive exercise in white muscle of rainbow trout.

The oxidative utilization of lipid and carbohydrate was examined in white muscle of rainbow trout (Oncorhynchus mykiss) at rest, immediately after exhaustive exercise, and for 32-h recovery. In addition to creatine phosphate and glycolysis fueling exhaustive exercise, near maximal activation of pyruvate dehydrogenase (PDH) at the end of exercise points to oxidative phosphorylation of carbohydra...

متن کامل

Regulation of glycogen synthase and phosphorylase during recovery from high-intensity exercise in the rat.

The aim of this study was to determine the role of the phosphorylation state of glycogen synthase and glycogen phosphorylase in the regulation of muscle glycogen repletion in fasted animals recovering from high-intensity exercise. Groups of rats were swum to exhaustion and allowed to recover for up to 120 min without access to food. Swimming to exhaustion caused substantial glycogen breakdown a...

متن کامل

Glycolytic enzymes in different types of skeletal muscle: adaptation to exercise.

BALDWN, K. M., W. W. WINDER, R. L. TERJUNG, AND J. 0. HOLLOSZY. Glycoi’ytic enzymes in di$erent types of skeletal muscle: adaptation to exercise. Am. J. Physiol. 225(4): 962-966. 1973.-The level of activity of hexokinase increased 1700/;, in red skeletal muscle (red portion of quadriceps), 50y0 in intermediate (soleus), and 30% in white skeletal muscle (white portion of quadriceps) in rats subj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 282 3  شماره 

صفحات  -

تاریخ انتشار 2002